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Weighing up sources of evidence is a key skill for clinical decision‐makers.

Randomised controlled trials (RCTs) and observational studies each have advantages

and disadvantages, and in both cases perceived weaknesses can be improved through

modifications of design and analysis. In the field of pharmacoepidemiology, RCTs are

the best way to determine whether an intervention modifies an outcome being

studied, largely because randomisation reduces bias and confounding. Observational

studies are useful to investigate whether benefits/harms of a treatment are seen in

day‐to‐day clinical practice in a wider group of patients. Although observational

studies, even in a small cohort, can provide very useful clinical evidence, they may

also be misleading (as shown by subsequent RCTs), in part because of allocation bias.

There is an unmet need for clinicians to become well versed in appraising the study

design and statistical analysis of observational pharmacoepidemiology (OP) studies,

rather like the medical training already offered for RCT evaluation. This is because

OP studies are likely to become more common with the computerisation of

healthcare records and increasingly contribute to the evidence base available for

clinical decision‐making. However, when the results of an RCT conflict with the

results of an OP study, the findings of the RCT should be preferred, especially if its

findings have been repeated elsewhere. Conversely, OP studies that align with the

findings of RCTs can provide rich and useful information to complement that

generated by RCTs.
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1 | INTRODUCTION

Robust evidence about clinical interventions is necessary for many

reasons, from new treatment licensing to informing clinical practice,

guideline creation and clinical/cost effectiveness analysis. Pharma-

coepidemiology involves the study of drug‐based interventions in

populations and, for >70 years, the randomised controlled trial (RCT;

see Glossary for all key terms) has been the mainstay of this field. RCTs

differ from observational pharmacoepidemiology (OP) studies in one

key way—the random assignment of participants to interventions.
wileyonlinelibrary.com/jou
Randomisation serves to ensure that confounders and effect modifiers

are randomly allocated between the groups, thus providing unbiased

treatment effect estimate (TEE) by determining whether an interven-

tion modifies an outcome under study. For this reason, they are the

preferred approach for estimating relative and absolute TEEs and

therefore are more useful in supporting clinical decision‐making. RCTs

are most impactful from the epidemiological perspective where efforts

have been made to increase their generalisability.

Observational studies also provide valuable evidence in the field of

medicine. They demonstrated the benefits of treating diabetes with
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insulin and the link between smoking and lung cancer, for example.1,2

Indeed, observational studies are universally accepted for delineating

the natural history of diseases, their risk factors and prognostic

markers. However, OP, where (beneficial/harmful) treatment effects

are quantified, has been subject to criticism because bias and

confounding create difficulty in attributing cause and effect. Notwith-

standing, OP studies are the mainstay of pharmacovigilance for harm-

ful effects once a drug has been licensed. Indeed, following robust

assessment of efficacy by RCTs, OP studies are able to assess whether

an intervention is effective is day‐to‐day clinical practice, which often

includes more heterogeneous patient groups and less precise diagnos-

tic criteria than might feature in an RCT.

A false ‘conflict’ between proponents of RCTs and OP studies has

been created. Both types of study have important, often complemen-

tary, objectives and each can deliver evidence not supplied by the

other. Indeed, the Academy of Medical Sciences has recently published

an extensive report on the ‘sources of evidence for assessing the safety,

efficacy and effectiveness of medicines’.3 Both RCTs and OP studies have

strengths and weaknesses. Both provide flawed answers, through poor

design, execution or analysis. There is also increasing concern about the

observed efficacy–effectiveness gap and well‐designed OP studies

(alongside more generalisable RCTs) will help plug this.4

Robustly designed and conducted RCTs have good internal

validity, allowing inferences on efficacy/relative efficacy and causality

to be made.5 Relative effectiveness can be measured in pragmatic RCTs

or in OP studies.4,6

Evaluating sources of clinical evidence is a key skill for clinical

decision‐making. In light of this, we discuss the inherent properties,

advantages and disadvantages of both types of study and how they

might be improved to assist readers in balancing evidence to make

clinical decisions, particularly in the field of OP, where robust method-

ology and statistical analysis is less well‐understood. However, we

argue that when the results of RCTs and OP studies in similar patient

populations conflict, the results of a well‐designed and executed RCT

are more likely to represent an unbiased TEE. However, well‐designed

and executed OP studies can confirm and extend the findings of RCTs

and show that treatment works in groups often excluded from RCTs,

such as older people, the very young and those with comorbidities.
TABLE 1 Bradford Hill's criteria for causality as applied to medical

sciences8

Strength of the

association

The stronger the association, the more

likely it is that the effect is causal

Consistency Reproducibility

Specificity A specific exposure gives rise to a specific outcome

Temporality The exposure must precede the outcome

Biological
gradient

A dose–response relationship; the greater the

exposure the larger the effect

Plausibility Consistent with scientific understanding

Coherence Coherent with other theories

Experiment The outcome can be altered, improved or abolished

by experiment—“here the strongest support for

causation can be revealed”8
2 | RANDOMISED CONTROLLED TRIALS IN
PHARMACOEPIDEMIOLOGY

The inherent properties of RCTs make them the most robust means of

evaluating healthcare interventions.5 When properly designed and

executed, with sufficient power and appropriate analysis, RCTs give

the best indication of the efficacy of an intervention.5 The key proper-

ties of RCTs that differ from OP studies are:

• A preplanned experiment, which gives rise to internal validity (and

can reduce selection bias)

• Random treatment allocation, which prevents allocation bias (also

variously known as channelling bias, contraindication bias,
confounding by indication, confounding by severity or confounding

by frailty)

• Blinding, which avoids observer bias (although some RCTs are not

blinded)

The advantages of RCTs stem from:

• The reduction of bias and the equal distribution of confounders and

effect modifiers provided by randomisation

• Blinding (but not always done)

• Formal calculation of adequate trial size to ensure satisfactory

study power and thus meaningful results

• Minimisation of missing data and systematic collection of outcomes

to prevent information bias

Hypothesised effect modification can be measured in an RCT

through stratification by the potential effect modifier's presence or

absence, thus allowing the identification of people who may benefit

from, or be harmed by, a given treatment.7 If no effect modifiers affect

a drug, its effects are said to be homogeneous. It is important that any

such strategy be specified in advance.

Bradford Hill8 lists several criteria that increase confidence that an

association is causal (see Table 1 for these criteria as applied to the

medical sciences). He states that experimentation lends the strongest

support to causality—the design of RCTs can fulfil the experimentation

criterion and support causal inferences.8

RCTs have limitations, assuming otherwise robust design. These

relate particularly to the generalisability of results. Other limitations

of RCTs include length of follow‐up and trial size. When long and/or

large, costs can increase dramatically and when inadequately so, can

mean insufficient power of the trial to detect treatment effect and

(more commonly) rare safety event outcomes.

If an RCT is improperly designed, performed or analysed it may

mislead more than a well‐designed OP study that attempts to account

for bias and confounding.9 In the following sections the characteristics
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of RCTs in pharmacoepidemiology and strategies to ensure their good

conduct are addressed in more detail.
2.1 | The advantage of randomisation, allocation
concealment and blinding

Randomisation, stratified or patient‐level, is a major contributor to the

benefit RCTs have over observational studies. Any increase in compa-

rability between the groups caused by randomisation applies equally

to variables we can and cannot measure as confounders and effect

modifiers are reduced or balanced.10-12 It is essential that the

randomisation process is not compromised, which is achieved through

robust randomisation methods and allocation concealment.9

Importantly, allocation concealment and blinding of allocation are

not the same. In RCTs, although blinding requires allocation conceal-

ment, allocation concealment is not always followed by blinding

(open‐label RCT).13 Ideally, when a study is blinded, this should apply

to all participants and staff, but is not always practicable (then called

partial blinding).13,14 Studies should always report who was blinded

and who was not.

PROBE study: is a study type where outcome data are collected

through routine clinical care and thought to increase the

generalisability of findings. The open‐label nature of the trial may

introduce observer bias in the recording of the endpoints, even though

the use of hard endpoints tries to reduce subjectivity. Also, patients

know to which intervention they are exposed, introducing the risk of

contamination if they seek treatment from another healthcare

provider/over‐the‐counter that goes unrecorded in the trial.15
2.2 | Reduction of bias and confounding in RCTs
compared to OP studies

The design of RCTs reduces bias and confounding and hence spurious

and indirect associations respectively. There is not always a clear

distinction between bias and confounding, but bias can be considered

a design flaw and confounding a true, but not causal, association. For

example, in OP because other factors (e.g. frailty) may be associated

with both the propensity to be allocated a drug and with the outcome

of interest, frailty is a confounder of the drug exposure–outcome

association. Although this is sometimes referred to as confounding

by indication, others refer to it as allocation bias since the allocation

is non‐random. In this case, however, the bias is not a study design

effect.

In the main, there are 3 categories of bias which the design of an

RCT minimises (indeed most biases fit into 1 of these broad catego-

ries, despite their varying nomenclature); selection bias, allocation bias

and information bias.16

The Cochrane Handbook for Systematic Review of Interventions

contains a tool that uses readers' judgement to assess the risk of bias

in a study, and hence render a verdict about its internal validity and in

turn whether it merits inclusion in evidence synthesis.17 To maintain

the benefits inherent to RCTs and provide for adequate reporting of
protocols and results, the following paragraphs describe agreed

reporting standards.

CONsolidated Standards Of Reporting Trials (CONSORT)18: since

1993, the reporting standard has undergone regular revisions; the

current 2010 revision consists of a 25‐item checklist and flowchart

focussing on trial design, analysis and interpretation; a central tenet

is the preregistration of trial protocols. In particular, adherence to

CONSORT may reduce selective reporting bias (a type of information

bias) and allows the reader to ascertain whether included analyses

were preplanned or not and if not why. Studies have investigated

the effect of the 2001 revision to the CONSORT guidelines on the

completeness of reporting.19-21 Although these found a general trend

of improvement in the reporting of important aspects of trial

methodology, it remained sub‐optimal.19-21 Endorsement of CON-

SORT by journals may beneficially influence the completeness of trial

reporting.19

Statistical analysis plan: (SAP) is a critical document to the under-

taking of RCTs (and indeed OP studies) and making the plan available

supports transparency and reproducibility, especially since statistical

decisions heavily influence a trials' conclusions.22 Until 2017, no

guidance for SAP contents existed (compare with CONSORT, around

since 1993). A recently published expert consensus document has

now specified minimum content for an SAP in relation to RCTs23

(and now also for OP studies24). It will be important to measure

whether this improves transparency of reporting statistical analysis

and consequently whether this improves the reproducibility of RCTs

(and OP studies).
2.3 | RCTs have internal validity, which allows
causality to be established

Well‐designed and well‐conducted RCTs have internal validity.25 This

is especially the case when the population being examined is large and,

by analogy, if the findings are replicated elsewhere. However, an RCT

may produce a TEE not generalisable beyond the population being

studied, despite having internal validity. Conversely, a generalisable

RCT has a TEE which can be applied more broadly. However, in order

to calculate an absolute risk reduction, theTEE obtained must apply to

the background population against whom the absolute risk reduction

is to be calculated.
2.4 | RCTs facilitate the comparison of treatments

Due to the results probably representing the truth, RCTs can directly

compare different treatments head‐to‐head when an active compara-

tor control is used instead of placebo. This allows conclusions regard-

ing relative efficacy to be made. Multiple‐arm studies can be used to

demonstrate noninferiority or superiority, comparing multiple treat-

ments or dosages simultaneously, and are becoming more common.26

With an ever‐increasing number of treatments available, it is

impractical to carry out head‐to‐head comparisons of each one. A

well‐conducted RCT— due to the confidence that the TEE observed
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is likely to be true — can more easily be incorporated into adjusted

indirect comparisons, mixed treatment comparisons, meta‐analyses

and systematic reviews than OP studies. Thus, RCTs allow statistical

inference to be made regarding the efficacy of different interventions

even when direct comparison has not been made.27
3 | MAXIMISING THE RESULTS OF RCTS IN
PHARMACOEPIDEMIOLOGY

In this section, aspects of trial design and conduct aimed at maximising

validity and reducing the impact of constraints inherent to RCTs are

explored.

Although preferable for assessment of efficacy, individual trial

methodology must be scrutinised to critically appraise its results (see

Table 2 for factors that might reduce confidence in RCTs or meta‐

analyses combining RCTs).

It is important to consider the context in which a trial has been

conducted. For example, generalisability may be particularly compro-

mised in pharmaceutical company‐funded studies where the objective

is to demonstrate superiority of a new drug over existing therapy and

a highly selective study population has been used or if there is differ-

ential drop out between arms.
TABLE 2 Factors that might reduce confidence in a randomised
controlled trial, either when considered alone or when compared in
meta‐analysis28

Study limitations
(risk of bias)29

Failure to conceal allocation

Failure to blind

Loss to follow‐up
Failure to consider intent‐to‐treat principle
Stopping early for benefit

Use of unvalidated outcome measures

Carry‐over effects in cross‐over trials
Recruitment bias in cluster‐randomised trials

(if those recruiting participants know the

participants' allocation, even when allocation

of clusters has been adequately concealed)

Inconsistency of

results30
Point estimates vary widely across studies

Confidence intervals show minimal or no overlap

The statistical test for heterogeneity shows a low

P‐value
I2, a statistical test for heterogeneity, is large

Indirectness of
evidence31

Differences in populations

Differences in interventions

Differences in outcomes

Indirect comparisons

Imprecision

(random error)32
Insufficient sample size

Low event rate

Confidence interval overlaps no effect

Reporting bias29,33 Publication bias: consider especially when only

a small number of commercially funded

trials available

Selective reporting bias: consider when there

is non‐publication of original study protocol
The New England Journal of Medicine has published an excellent

series on RCTs, written by clinical trialists for clinical trialists, covering

much of the material detailed below in more depth.34
3.1 | The findings of RCTs may not be generalisable

RCTs are often done in select groups of patients, in specialist centres,

by leading experts, using state‐of‐the‐art technology for a limited

period of time, so‐called explanatory RCTs — unrepresentative of

the care of patients receiving the intervention in the community.

While these trials are critical to establish efficacy and preliminary

safety, it may mean that the study results are only valid in the specific

group of participants included in the trial (i.e. not generalisable). Also,

some RCTs have been criticised for not taking into consideration fac-

tors important to patients' well‐being.35

Generalisability may not apply to an RCT unless steps are taken to

make it more generalisable, such as by using some of the following

methods.35

Intention to treat analysis: (ITT) can help prevent attrition bias,

which threatens the internal validity of RCTs by removing the benefits

of randomisation, introducing potential bias, confounding and imbal-

ance in the prior risk of the outcome of interest between study groups

(and also reduce the study's power).35,36 ITT evaluation might also

better reflect real‐world clinical practice (increasing generalisability),

where patients may adhere poorly to, or stop, the intervention and

thus gives a more realistic TEE (as these nonadherent patients are

accounted for), although underestimating the maximum achievable

benefit.10,16

Sensitivity analyses should be presented comparing relative TEE of

per protocol results (those who fully completed the study protocol) to

ITT results. It is also good practice to provide the subgroup character-

istics of patients lost to follow‐up.36

Pragmatic RCTs: (pRCTs) aim to redress perceived problems in

generalisability of RCTs by providing answers to questions relevant

to patients and clinicians.37 The Salford Lung Study randomised

~50% of the community patient population, demonstrating the

superiority of fluticasone furoate and vilanterol over usual care in

the management of COPD, the results of which are broadly

generalisable.38

Large simple RCTs: (lsRCTs) are well‐suited to assessing outcomes

which are rare or have long latency, when study populations are het-

erogeneous or when many risks need quantifying. lsRCTs minimise

the complexity and volume of data as outcomes are measured from

routine care, increasing generalisability. An example includes a trial

demonstrating that ziprasidone is not associated with an excess of

non‐suicide mortality, despite being associated with QT‐prolongation

on the electrocardiogram.39

Randomised database studies: are likely to become more common

with the increasing availability of computerised health data e.g. a

Swedish study demonstrating that thrombus aspiration prior to

stenting in acute ST‐elevation myocardial infarction was no better

than stenting alone, with similar outcomes in all subgroups.40
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3.2 | The role of meta‐analysis in assessing
generalisability

Meta‐analyses involve combining the results of many RCTs to get a

more precise estimate of the true TEE since the effective sample size

is increased, increasing generalisability. An important aspect of meta‐

analysis is to test whether it is valid to combine data in this way or

whether substantial unexplained heterogeneity (as measured by

Cochran's C test or the I2 statistic) renders the combined estimate

invalid.41

3.3 | RCTs can be expensive and difficult to
undertake

RCTs can be expensive to conduct. For instance, the burden of

regulation provided by internationally‐agreed documents such as the

International Conference on Harmonisation of Good Medical Practice

(ICH‐GCP) are viewed by some as an impediment to speedy

research.42,43 This is in part due to standards required by the study

protocol to ensure internal validity, safety, regulation compliance and

length of time required for follow‐up.10 Costs can increase further if

larger groups of patients are needed to power RCTs.10 Also, the out-

come of interest may be so far in the future that it is difficult and

expensive to maintain follow‐up.44

Cluster RCTs: (cRCTs) have less statistical efficiency than

randomising an equivalent number of people at the individual‐level.45

An example of a cRCT is the Randomised Evaluation of an Algorithm

for Crohn's Treatment Trial that randomised gastroenterology clinics

to standard incremental therapies for disease control or early com-

bined immunosuppression and demonstrating no difference in primary

outcome between the units of randomisation.46

It may be impossible to do an RCT in emergency situations; for

example following a terrorist incident or during an epidemic where

there is a need to produce information quickly while at the same time

minimising the risk to patients and staff.47 The cRCT can help with

these difficulties. The 2014–2015 Ebola outbreak led to the design of

novel approaches to undertaking RCTs. The adaptive ring vaccination,

open‐label, cRCT (Ebola Ça Suffit Trial) was used to demonstrate effi-

cacy of rVSV‐vectored Ebola vaccine, where immediate vs. delayed

vaccination was compared and immediate vaccination was favoured.48

In ring vaccination, at‐risk patients are identified for vaccination by

being contacts of a known Ebola case and had been used successfully

during smallpox eradication, but not before as a clinical trial

methodology.49

Crossover RCTs: (xRCTs) reduce intersubject variability (thus

increasing precision) but are not appropriate if there is a significant

carryover from one of the treatments, despite washout.50,51 xRCTs

can increase study power but cannot be used for conditions with an

acute natural history nor investigate treatments providing cure rather

than respite.50 For example, an xRCT investigated sequential plasma-

pheresis vs. sham plasmapheresis (placebo) in the same patients to

measure symptom improvement in rheumatoid arthritis and showed

no difference between the treatments.52
Factorial RCT: (fRCT) is another design assessing outcomes more

efficiently than separate trials.53 An fRCT was used by investigators

to gauge whether a shortened course of N‐acetylcysteine (NAC) in

paracetamol intoxication was associated with fewer side effects than

a 21‐hour course, while at the same time assessing if pretreatment

with ondansetron reduced nausea and vomiting due to NAC treat-

ment. The study found that both the shortened course of NAC and

ondansetron pretreatment reduced nausea and vomiting indepen-

dently and also additively (and that the shortened course of NAC

was associated with fewer anaphylactoid reactions).54
3.4 | Issues related to study power and lower than
expected event rate in RCTs

Careful thought is given to planning RCTs to ensure internal validity

and adequate power. Should insufficient participants be recruited,

more participants than expected drop‐out or a lower than expected

event rate be observed then the trial power may be inadequate to

detect significant change (or have to continue for longer than planned)

to yield an adequate TEE.55 Some of the study designs detailed below

can help address these issues, in addition to the advantages already

described by using large pRCTs and lsRCTs.

Multi‐arm studies and adaptive clinical trials: may be better than

2‐arm studies at demonstrating superiority, which frequently do not

show this.56 Patients, clinicians and regulatory authorities want to

know whether certain interventions beat those already available as

quickly as possible.56,57 The ideal study design is yet to be established

and the multiple arms may cause difficulties interpreting results,

particularly if arms are added/removed.

Adaptive clinical trials: (ACTs), with multiple arms, seek to address

some of the concerns about multi‐arms studies. To date, ACTs have

been mainly deployed in the field of oncology, since their design can

handle the increasingly‐recognised biological heterogeneity of

tumours but they show promise in other fields. There are different

forms of these trials, but all allow some prespecified adaptation to

take into account evolving understanding both from within and out-

side the trial. ACTs aim to address deficiencies in traditional trial

design, described as the weakest link in cancer therapy development,

given molecular understanding of tumour biology has increased.58

The STAMPEDE trial investigating treatments for advanced

prostate cancer is one example of an adaptive, multi‐arm, multi‐stage

platform trial.59 In addition to the multiple cross‐wise comparisons,

the necessity to undertake repeated interim analyses make these trials

complicated to analyse and interpret, as these increase the likelihood

that a positive finding is significantly different by chance alone if not

accounted for.57,60 Types include: basket trials, umbrella trials and

platform trials.

Stopping after a prespecified number of events: some trial designs,

particularly when assessing event‐based outcomes, power the trial in

terms of a minimum number of primary outcome events to be

observed, rather than pre‐specifying the number of participants to

be recruited or their length of time under observation (although the
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observed event rate is influenced by these 2 latter parameters). This

may increase trial efficiency by declaring a TEE as significant on the

basis of an observed difference in event rates between arms, without

having to wait for a pre‐specified number of participants to be

enrolled or for a specific length of time to have elapsed. This type of

design allows for flexibility should the event rate assumptions in the

trial design be greater than the number of events observed in practice,

which would otherwise result in the trial being under‐powered. The

cardiovascular outcome trial examining canagliflozin for the treatment

of type 2 diabetes (CANVAS programme) adopted this approach to

demonstrate that canagliflozin reduced the number of major cardio-

vascular outcome events compared to placebo.61
3.5 | The advantages of prespecifying sub‐group
analysis

RCTs often report results with regards to sub‐groups differing from

each other in baseline traits. Trial populations are often heterogenous,

raising the question of whether effects observed hold for all of the

patients regardless of baseline characteristics.62,63 Conducted appro-

priately, sub‐group analysis is illuminating, increases generalisability

and impacts positively on patient care.62 However, performed poorly,

or indeed not reported, it can be misleading.62,63

Preplanned sub‐group analysis forms a key part in all the published

criteria designed to help readers decide whether the sub‐group effect

is real and is also encouraged in CONSORT.18,62 However, systematic

reviews have shown that reported sub‐group analyses are seldom

prespecified and there is a recognition that uncontrolled flexibility in

the analysis of data carries a real risk of false positive findings.62-65

If multiple assumptions are tested in subgroup analysis the likelihood

of a falsely significant result by chance alone increases.66 Although

unscheduled sub‐group analysis, labelled as such, may have a role in

hypothesis‐generation for subsequent trials, statistically inferential

approaches to sub‐group analysis should be limited to small numbers

of pre‐specified sub‐groups underpinned by sound biological evidence

to limit the reporting of false positive effects.67
TABLE 3 Number of patients to be observed to detect a given
adverse event, modified from75

Expected incidence of

adverse drug reaction

Number of patients to be
observed to detect:

1 event 2 events 3 events

1:100 300 480 650

1:200 600 960 1300

1:1000 3000 4800 6500

1:2000 6000 9600 13 000

1:10 000 30 000 48 000 65 000
3.6 | The conflicting tensions in stopping trials early

A complex problem is the early termination of RCTs due to beneficial

effects becoming apparent, where there is a tension between

obtaining a true TEE and denying potential users a beneficial new

treatment. When a trial is stopped early its internal validity is compro-

mised. A trial stopped early for beneficial reasons may overestimate

the treatment effect because: the decision to stop trials early requires

data analysis on multiple occasions; probability theory states, the more

times data are analysed, the more likely it is that the data will yield a

random high causing the trial being stopped.25,66,68,69 Stopping trials

early also reduces the likelihood of adverse effects being detected as

there is less time for these to accumulate. Methods such as increasing

nominal significance for each analysis (e.g. the O'Brien–Flemming

method), which raise the threshold for stopping at interim analysis,
can lessen the risk of random highs leading to trial termination and

stopping boundaries should always be pre‐specified in the SAP.70

Trials may stop early for futility—the inability of a clinical trial to

meet its objectives.71 On the one hand stopping early for futility pro-

tects participants from exposure to ineffective treatment, saving

resources for more encouraging research. On the other hand, stopping

for futility may leave secondary research questions unanswered and

trials that fail conventional significance testing may still be consistent

with a probable positive effect, contributing to the total evidence (in

meta‐analysis). Failure to report trials stopped early for futility leads

to publication bias in future evidence syntheses.72

Futility rules must be considered before starting a trial and always

be included in the SAP although it may not be clear a priori how to

choose the stopping boundary. Indeed, many trials are continued to

conclusion despite clear evidence of harm. Statistical methods exist

to assess futility, including conditional rules that attempt to calculate

the ultimate likelihood of success. Some of these may be unduly influ-

enced by early participants in the trial.71-73 The problem of stopping

trials early for futility risks the opposite effect to stopping trials early

for benefit. In stopping for futility, early results may represent random

lows, which cause the illusion of no effect and the trial being stopped

when, had more information been gathered, this no effect signal would

disappear.
3.7 | Assessment of low frequency or long‐term
harms

RCTs rarely identify a pre‐defined hypothesis to detect harms (as

opposed to a hypothesis for efficacy), and are not powered to observe

harms occurring infrequently or which only develop a considerable

time after exposure.74 Also, patients at highest risk of harm are often

excluded from RCTs (e.g. older patients, those with multiple comorbid-

ities, children), even if destined to become significant users of the

treatment if licensed.74 Additionally, in longer‐term, larger RCTs it

can be challenging to distinguish harm caused by treatment (iatro-

genic) from that which is “inter‐current and non‐causal or just random

error”.66 It is recognised, however, that rare harms may not become

apparent until after a therapy has been licensed (Table 3 illustrates

the number of patients to be observed to detect a given adverse event

rate). In meta‐analysis or systematic reviews, conclusions about harm
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may also be misleading if the available data are affected by publication

bias.74

It is important to consider the ITT effect estimate when examining

efficacy of an intervention but for safety evaluation, on‐treatment (and

per protocol) analyses should be considered since any harm caused by

an intervention is more likely to occur in those exposed to the treat-

ment than in those who are not.
3.8 | A note about endpoints

RCTs report outcomes that may or may not be clinically meaningful.

Particularly in early development, a drug's effect may be reported in

terms of a surrogate, or proxy, for change in disease status (e.g. HbA1c

— glycated haemoglobin — in diabetes). Changes to proxy markers are

often described as a soft outcome. Whether a change in a proxy

brought about by a drug translates into a meaningful effect on clinical

(hard, unequivocal) outcomes can only be studied in larger, longer trials

which allow for sufficient hard outcomes to accumulate in the treat-

ment groups to detect a difference, if one exists.

While some surrogates appear to be directly correlated to hard out-

comes, for example reducing systolic blood pressure has been well‐

established to reduce cardiovascular events (CVD).76 The relationship

between other proxies and hard outcomes is less clear, as for example,

between HbA1c and complication outcomes in diabetes (e.g. CVD,

amputation).

New drugs for the treatment of type 2 diabetes are licensed on the

basis of reducing HbA1c and no signal of excess of cardiovascular or

other safety events in meta‐analysis of the available pre‐licensing

studies, with large‐scale cardiovascular outcome trials (CVOT) usually

undertaken post‐licensing. Considering dipeptidyl peptidase‐4 inhibi-

tors and sodium‐glucose transporter 2 inhibitors, it is possible to illus-

trate the problem with the relationship of proxies to clinical outcomes.

Both recently licensed classes of drugs reduce HbA1c by improving

glycaemic control. However, no dipeptidyl peptidase‐4 inhibitor drugs

appear to reduce the risk of CVD in CVOT (but do not increase the

risk) despite reducing HbA1c. Conversely, all sodium‐glucose trans-

porter 2 inhibitor agents appear to reduce CVD risk to some extent

in CVOT.77 These disparate outcomes suggest that a reduction of

HbA1c is not sufficient to predict whether a drug to treat diabetes will

lead to a reduction in hard CVD clinical endpoints. Thus, careful con-

sideration of whether soft endpoints reported in clinical trials translate

into clinically meaningful hard endpoints must always be given.
4 | OBSERVATIONAL
PHARMACOEPIDEMIOLOGY

Observational studies include cohort, case–control and cross‐sectional

studies.78 Except in specific circumstances most OP studies should

take the form of a cohort study.

The key difference between these types of study and RCTs is that,

in OP studies, the intervention is selected for/by a patient, or the

patient is selected by having been exposed to the intervention, rather
than it being allocated randomly.78 This makes it conceptually more

difficult to attribute an outcome to a particular treatment and also

introduces the potential that bias or confounding account for any dif-

ferences observed.78 In particular, an extremely challenging problem in

OP is allocation bias. Also, the sensitivity and specificity of the out-

come measures are often unknown in OP studies, so it is unclear if

all outcome data have been captured and in what depth of detail,

which leads to information bias.

Despite these perceived deficiencies, OP studies (as cohort or

case–control studies, but more often as an adverse event reporting

system e.g. theYellow Card Scheme79 in the UK) are an important part

of post‐licensing pharmacovigilance. With the increasing availability of

electronic health databases and disease registries there is renewed

interest in OP studies for making inferences on the effectiveness of

interventions as well as quantifying potential harms. Although most

clinicians are well‐trained in assessing the validity of RCTs, there is

less widespread knowledge of appropriate study design and statistical

methods for OP. However, it is vital for healthcare professionals to

become versed in OP study appraisal as an increasing number of these

studies are likely to be published in the future, given the increasing

accessibility of large volumes of computerised observational data

and a strong push to harness these.3,4,80 Clinicians will need to under-

stand whether the study design used is appropriate given the question

and whether the data analysis methods are robust enough to have

confidence in the results.

Clinical pharmacologists are particularly well‐placed to be at the

forefront of robust OP study production given their training in drug

discovery, mechanisms of drug action, stratified pharmacology and

drug safety. Indeed, clinical pharmacologists are already producing

informative research by conducting studies underpinned by sound bio-

logical principles such as the cohort study demonstrating that paroxe-

tine use was associated with an increased risk of death in women with

breast cancer treated with tamoxifen (paroxetine inhibits cytochrome

P450 enzyme 2D6, which in turn reduces the bioactivation of tamox-

ifen necessary for its clinical effect).81

The following sections address in more detail the characteristics

and strengths of OP studies and strategies to ensure their good

conduct.

4.1 | OP studies allow quantification of
effectiveness and can have good external validity

OP studies are often said to have high external validity.4,12,82 An OP

study might confirm an intervention as effective in a heterogeneous

population sample, when the intervention has previously been demon-

strated as efficacious in an RCT. This is especially the case when the

OP study includes some similar participants to the RCT demonstrating

efficacy and if the TEE detected in this subgroup of the OP study is in

the same direction and order of magnitude as that reported in an

RCT.82 As such, OP studies can confirm and broaden the findings of

RCTs to a wider population.83

STrengthening the Reporting of OBservational studies in Epidemiol-

ogy (STROBE): like CONSORT, STROBE consists of guidelines and a



TABLE 4 Particular areas suited to the use of observational
studies95

Prospective evaluation of patient population and disease characteristics

Assessment and comparison of costs and effectiveness associated with

diagnostics

Investigation of adherence to guidelines

Postmarketing surveillance

Detection of responsive subgroups

Characterisation of risk factors and levels of risk

Identification of relevant sources of uncertainty
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22‐item checklist considered essential for good reporting.84 Current

guidelines date from 2009, which is the first iteration. They cover

the 3 most commonly employed designs in observational studies: (i)

cohort; (ii) case–control; and (iii) cross‐sectional studies.84 Also like

CONSORT, adherence to STROBE may reduce bias and allow the

reader to ascertain whether included analyses were preplanned or

not, and if not why.84 STROBE is more recent than CONSORT

(2007 vs 1996) and thus there is less evidence to suggest that it

improves the quality of reporting although a bibliographic study found

that of the observational studies analysed (random sample of 100

studies in 2010), over 80% made appropriate use of STROBE.85
Cost evaluation

Formation of hypotheses to be tested in subsequent experiments

4.2 | OP studies can be carried out over a long
period of time, detect rare adverse events and have
lower costs

Observational studies can be carried out over longer periods of time

than RCTs. Indeed, some have been running for many decades, such

as the Framingham Cardiovascular Cohort Study, operating for over

65 years.86 This advantage of time means that observational studies

are able to provide important data on patients' long‐term experiences,

particularly in the setting of chronic diseases with a natural history

over many years.87

RCTs are often not sufficiently powered to detect adverse events

that occur very infrequently. For instance, to detect a doubling of an

event rate from 0.1 to 0.2%, ~50 000 participants would need to be

studied in an RCT to achieve an 80% power of detecting this at a P‐

value of .05.88 The extended period over which OP studies can be

undertaken, and the relative ease of obtaining large enough popula-

tion samples compared to RCTs, makes OP studies suited to the defin-

ing of adverse events and their incidence.87 Indeed, OP studies are an

integral part of the post‐marketing surveillance programme of newly

approved drugs (e.g. adverse event reporting systems) and are

occasionally mandated by regulators if there is an inconclusive safety

signal in pre‐licensing RCTs.88 Observational studies can facilitate

the detection of rare (<1/1000) and very rare (<1/10 000) adverse

events (see Table 3) and are also able to provide long‐term data on

tolerability.83,89

Since observational studies frequently run in parallel with routine

clinical care, they often cost less than RCTs.90 In addition, OP studies

might employ data available from clinical databases such as the Clinical

Practice Research Datalink (UK), the Scottish Care Information—Dia-

betes Collaboration database and Health Maintenance Organization

Research Network (USA).91-93 Indeed, the future of OP is likely to

be represented in such large longitudinal electronic healthcare record

(disease registry or insurance provider) databases.
4.3 | OP studies can provide data to justify RCTs

OP studies often provide the evidence to justify, or to generate

hypotheses for, an RCT94 (seeTable 4 for areas suited to observational

studies). In addition, if the TEE detected in an OP study is very large
then it is not always necessary to undertake an RCT.94 There are

multiple examples of treatments becoming established on the basis

of observational data without confirmation in an RCT, such as, for

example, the treatment of type 1 diabetes mellitus with insulin.2
5 | MAXIMISING THE RESULTS OF OP
STUDIES

The perceived disadvantages of observational studies in pharma-

coepidemiology are discussed below alongside methods available to

diminish these, related to both study design and methodology.

5.1 | Bias and confounding make causality more
difficult to establish in OP studies

The nonrandom allocation of patients in OP studies means that they

are more prone to bias and confounding, both known and

unknown.96,97 Although strategies exist to mitigate the effects of

these it is never possible to correct the results for all possible influ-

ences, particularly those unknown. Bradford Hill lists criteria for causal

association8 (Table 1), although, due to the inherent difficulty control-

ling for bias/confounding in OP studies, causality is more difficult to

establish. Statistical association does not imply causality. However,

the larger the TEE in OP studies the greater the support; yet stronger

still if the observation of association is consistent in different

studies/populations and with different study designs.66,96-98
5.2 | OP studies can lead to inflation of positive
treatment effects and
under‐estimation/under‐reporting

The distortion caused by not randomising and blinding during an OP

study has been associated with effect estimates as large or larger than

the true treatment effect itself.14 However, meta‐analyses of the TEE

in OP studies and RCTs have demonstrated that when good quality

studies are analysed, the direction and magnitude is broadly
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similar.99-101 Nevertheless, the spectre of TEE over‐inflation hangs

over OP studies and should always be borne in mind when considering

their results.

Many OP studies rely on data gathered through routine clinical

practice. Conversely, for different reasons to those just described,

this means that OP studies may also be at risk of under‐estimation,

where patients fail to seek healthcare and thus the true incident rate

of a condition may not be recorded, or under‐reporting, where

following interaction with a healthcare system the data are inade-

quately reported. This under‐estimation is a form of nondifferential

information bias affecting the sensitivity and specificity of the

outcome.102
5.3 | Approaches to deal with the limitations of OP

Different methods (in terms of study design, analysis or both) exist to

reduce the effect of bias/confounding in OP, some of which are only

appropriate in specific circumstances. One rule of thumb as a valida-

tion method is whether, within the OP study, a group of subjects

meeting the inclusion/exclusion criteria of a published RCT exploring

the effect of the same drug can be discerned. If it can be demon-

strated that the patients in this subgroup have a TEE detected that is

in the same direction and order of magnitude as that found in the

RCT, then this increases confidence that the TEE in the larger, more

heterogeneous group of patients is robust.
5.4 | Study design and analysis methods to reduce
bias and confounding in OP

Incident‐user design: this assumes that both users and controls have

been identified by clinical staff as benefitting from a new prescrip-

tion, making users and controls more similar, particularly in character-

istics which may not be observable.103 This does not always mean

that incident‐users and their controls are identical — for instance

clinicians may avoid prescribing newly licensed drugs to frail patients,

sticking instead to drugs they are more familiar with using in this

group. In this case the users and controls would cease to be as

similar. Incident‐user design also means precluding prevalent‐users

(longer‐term users) from the study, reducing sample size and losing

potentially valuable information. This design can be modified for the

investigation of second‐ or third‐line treatments by examining those

that switch/add treatment for the same indication, as this

switching/adding is not a random event, but rather influenced by dis-

ease worsening or a side effect again believed to improve compara-

bility between switchers.103

Natural experiments: one example is universal exposure to avoid

selection and allocation bias, where the exposure occurs in total pop-

ulations rather than through choice, allowing comparisons to be made

between exposed and unexposed time and causal inferences to be

made.104 This was the case in Japan, when use of the measles, mumps

and rubella (MMR) vaccine abruptly stopped due to concerns about

cases of aseptic meningitis. This allowed exploration of whether
MMR was associated with regressive autism when concerns about this

association surfaced a number of years later. Here, analysis of the Jap-

anese population before and after the cessation of widespread MMR

use found no link between MMR and regressive autism.105

Another example of a natural experiment, devised as an alternative

to RCTs, albeit applicable in limited circumstances, is regression discon-

tinuity design. This uses a predetermined assignment variable (e.g. CD4

count in deciding whether to start anti‐retroviral treatment in human

immunodeficiency virus infection) with a strict cut‐off, above or below

which an intervention is assigned, and assumes that there will be little

difference in subjects marginally over or under the asymptotic cut‐off,

who are then compared.104 Assignment to intervention cannot be

caused by the intervention but does require all participants to belong

to the same population. The effect is measured by discontinuity from

regression, which has been demonstrated mathematically to yield an

unbiased estimate of a causal effect.104

Propensity scores: are designed to correct for the non‐balanced

distribution of characteristics between the exposed and unexposed

groups and are more statistically efficient than multivariable regres-

sion models traditionally used to control for known confounders in

OP studies.106 However, like multivariable regression, propensity

scores can only correct for known confounders rather than all

confounders but, unlike multivariable regression the sensitivity of

propensity scores for unknown confounders can be estimated and

reported.106 In order to develop an effective propensity score a

thorough understanding of the covariates (i.e. the biology) is necessary

for them to be included in score creation.106 Propensity scores can be

used for matching treated and untreated subjects, for stratification into

mutually exclusive subsets, to create a synthetic sample in which the

distribution of baseline covariates is independent of treatment

assignment known as inverse probability of treatment weighting or for

covariate adjustment where the outcome variable is regressed on an

indicator variable denoting treatment status and the estimated pro-

pensity score.107

Focussing on the dose–response relationship: one of Bradford Hill's

criteria for causality is the presence of a dose–response relationship

where one might expect, for example, to see a larger treatment effect

from a larger exposure to an intervention. OP cohort studies have

focussed inferences on the cumulative dose–response effect, such as

in demonstrating that pioglitazone is not associated with an increased

risk of bladder cancer.108 Using a 2‐time updated exposure term, one

for ever‐/never‐exposure and another for cumulative exposure, has

been shown mathematically to remove the allocation bias from the

cumulative exposure term and provide a more reliable TEE based on

cumulative exposure.109 This technique would yield a conservative

TEE if exposure to an intervention caused an instantaneous, rather

than gradual, change in risk.

Instrumental variable analysis: uses an instrument linked to the

treatment, but not directly or indirectly linked to the outcome except

via the treatment.110 The challenge is instrument identification, which

must meet the following assumptions. First, the instrument should

affect treatment allocation. Second, it should be a feature that is

randomly assigned. Third, it should be associated with the outcome
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only via the treatment.110,111 A good example to illustrate this might

be differences in hospitals' formularies. In this case, the treatment's

accessibility depends on inclusion in the hospital's formulary, satisfy-

ing the first assumption. Although patients are not randomly allocated

to hospitals, it might be acceptable to assume that patients do not

present to a hospital due to knowledge of its formulary, satisfying

the second assumption. Finally, so long as the hospital's formulary is

not associated with other practices, e.g. quality‐of‐care, the instru-

ment can be thought to affect outcome only via the treatment itself,

satisfying the third assumption.110,111

This means that, in theory, by making these assumptions and

collecting data on the instrument, it is possible to make TEEs on out-

comes without having to adjust for confounders.110,111

Case cross‐over design of case–control studies: the within‐patient

control design acts to block the effect of unmeasured between‐

patient time‐invariant confounders without the need for these to be

measured and prevents selection bias (as users are compared to them-

selves). However, assumptions must be met to give valid results. First,

the exposure must be short‐lived and the outcome acute. Second, the

risk associated with the exposure must rise and fall rapidly. These

assumptions mean that the investigation of chronic diseases with

long‐term therapy is unsuitable with this type of study.112-114

Although in theory a case‐cross over design could be used to

investigate treatment effect, it is more often used to assess harm, such
TABLE 5 Examples of various methods employed to handle missing data

Method Description

Listwise/case deletion Simply omits the subjects in whom

produces unbiased results. Howe

deletion will lead to biased estim

Pairwise deletion Omits information only when data

elsewhere, existing values are us

standard errors of covariates diff

Mean substitution The missing value of a variable is re

information (as it is created from

missing at random. This is genera

Regression imputation Uses regression modelling to estim

Last observation carried forward Replaces absent data with the last r

it under‐estimates intrasubject v

Maximum likelihood modelling Assumes that the data present all a

the absent data points can be es

Expectation maximisation Utilises maximum likelihood modell

information. The process is iterat

intensive, especially if there are m

overestimate precision.

Multiple imputation Replaces missing data with a range

run, substituting each value in the

on each iteration. Summary stati

more robust as it retains the var

Sensitivity analysis An analysis that aims to characteris

input. All methods dealing with m

effect estimates with and withou

data.
as demonstrating that recent vaccination does not appear to raise the

risk of multiple sclerosis relapse.115 Importantly, this type of study

design cannot account for time‐varying within‐patient confounders,

e.g. changes to body mass index. It also cannot be deployed when

rates of drug exposure change across the time period being

investigated, by, for instance, a new drug with the same indication

being released. The case‐crossover design is also sensitive to

misspecification of the exposure window (see risk window bias) and

if the drug is available over‐the‐counter, nonprescribed doses would

be omitted from the patient's prescribing record leading to informa-

tion bias. This study design is also prone to recall bias, if patients'

recollections are used to define exposure rather than more objective

measures, such as prescriptions.112-114

Partial blinding: although most OP studies by their very nature do

not utilise randomisation, it is still possible to employ some form of

blinding. The published report should explain who was blinded and

who was not as this helps with critical appraisal.116

5.5 | Missing data

Although missing data can occur in both RCTs and OP studies, RCTs

often include protocols that go to great lengths to reduce this phe-

nomenon. The collection of complete data may prove more challeng-

ing in OP studies, where data are collected through routine clinical
, modified from117

the data are absent. If the missing data occur randomly, then this method

ver, data points are often not missing at random, and in this case listwise

ates of treatment effect.

testing a particular assumption are missing; if they are missing from

ed instead. This may lead to modelling problems where sample sizes and

er from one another.

placed by its mean value from other subjects. This method gains no new

information that exists already) and leads to bias when the data are not

lly not an accepted approach.

ate missing values, but like mean substitution adds no new information.

ecorded value for all missing data points. Although this approach is simple,

ariability and gives rise to an illusion of precision.

rise from a multivariate normal distribution. If there are few missing data,

timated by using the conditional distribution of other variables.

ing to create an entirely new (modelled) dataset based on all the available

ive and stops when the new dataset is stable. This approach is computer

any missing data, and tends to underestimate standard errors and thus

of plausible values representing the natural variability of values. A model is

range for each missing data point and a standard statistical analysis is run

stics are created by combining the statistic from each model run and is

iability and uncertainty of the missing data.

e how uncertainty in the output can be attributed to uncertainty in the

issing data should be subjected to this form of analysis, by comparing

t these missing data and then to the method used to handle the missing
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practice and often retrospectively. Missing data can lead to biased

estimates particularly if they are not missing at random. There are a

number of techniques detailed in Table 5 to handle missing data,

although the best way to deal with data being missed is to prevent it

from happening in the first place.117
6 | SOME SPECIFIC BIASES IN OP

The subsequent paragraphs give details about some specific biases in

OP to consider.

Protopathic bias: an example would be pancreatic cancer causing

diabetes, leading to the prescription of an antidiabetic drug. It may

then appear as if the drug had caused the pancreatic cancer, when

in fact the cancer had caused the indication for the drug — a form of

reverse causality.127 This bias may be detected in sensitivity analysis

by comparing lag times of differing length from the first date of expo-

sure to the development of the outcome.128

Surveillance (performance) bias in OP studies: an example might be

the use of ultrasound Doppler for the diagnosis of deep‐vein thrombo-

sis (DVT) following trauma. Centres routinely screening all trauma

patients for DVT are likely to have a higher rate of DVT diagnosis

(and consequently treatment) than centres employing a symptom‐ or

risk score‐based approach to ultrasound Doppler in trauma

patients.129 This bias can be reduced by employing an unexposed

comparison group with a similar pre‐test probability of being screened,

using outcomes thought to be diagnosed equally between the groups

or adjusting for the differential detection rate in the analysis.24
6.1 | Time‐related biases in OP studies

Immortal time bias: is often introduced into OP studies by the defini-

tion of exposure or by the subsequent analysis. This bias is remedied

by ensuring that the pre‐exposure time is counted, classified and

analysed as unexposed person–time.130-132

Confounding by disease stage: is another form of information bias

and can occur when comparing first‐line therapy with subsequent

treatment options. Those on first‐line treatment are likely to be at

an earlier stage of their disease compared those on second‐ or third‐

line treatment. Thus, an outcome related to first‐line therapy (and

more likely to be prescribed to those with shorter disease duration)

might be misattributed to subsequent treatment (more likely to be

prescribed to those with longer disease duration, but previously

exposed to the first‐line treatment), especially if there is a long lag

between exposure and outcome. This can be avoided by comparing

treatments in patients with similar disease duration/stage.133

Risk window bias: in practice, the risk window can be extremely

challenging to define and if it is too large serves to under‐estimate

the risk of the adverse events. It is best handled by sensitivity analysis

comparing varying risk window durations.134
7 | CONCLUSIONS

OP studies and RCTs have both contributed substantially to the

evidence informing clinical practice. However, there is room for

improvement to both types of approach.

Inferences based on RCT data are more likely to identify causal asso-

ciations. This is because RCTs reduce bias/confounding, meaning the

effects detected aremore likely to be caused by the treatment. However,

RCTs do have shortcomings in relation to their generalisability and their

ability to detect harms. Moreover, when deployed inappropriately, with-

out an evidence‐based hypothesis, if there is failure to follow the ITT

principle, or they report multiple unplanned post‐hoc sub‐group analyses,

their findings may be misleading.

OP studies can complement the findings of RCTs and extend their

results. However, caution should be exercised in their interpretation

since there is the risk that the results observed represent bias or con-

founding. This is especially the case when making causal inferences

from a small or unexpected treatment effect. There is an urgent need

to train clinicians to understand robust study design and data analysis

methods in OP to better appraise which studies provide valid evidence

and which do not.

The pre‐publication of study protocols and sub‐group analysis

alongside the adherence to reporting guidelines (CONSORT and

STROBE) improves quality and aids critical appraisal of both study

type. Also, design improvements or new variants of RCTs and OP

studies may provide methodological advantages and, for OP studies

in particular, may improve confidence in their results. Combining evi-

dence from both types of study in a considered and balanced fashion

would also benefit patients.

It remains the case that, all things being equal, RCTs provide better

quality evidence than OP studies but the latter, when well‐conducted,

can provide evidence with considerable clinical utility that may not

be provided by RCTs.
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Glossary (A‐Z)
Allocation bias
 Occurs due to absence of comparability between groups in the allocation of treatment such that they differ

significantly from one another by a factor other than the disease or exposure under investigation.96,97 These

systematic differences between how participants are assigned to their treatment group, means that those

exposed to an intervention differ from those not exposed in terms of their prior risk of the outcome of

interest or effect modifiers.
Allocation concealment
 Hiding the sequence of allocation prior to recruitment, so it is not possible to predict to which treatment group

a participant will be assigned.118
Attrition bias
 The unequal loss of participants between the treatment groups such that they are no longer similar to one

another.119,120 It is a type of after‐the‐event selection bias, where one group (or both) are no longer

representative of the condition under study
Basket trials
 A type of adaptive RCT. Eligibility is determined by a master protocol often defined by the presence of a

molecular alternation rather than a specific tumour site. Each basket represents a molecularly‐defined
subtrial (drug–mutation pair testing) with matched therapy or control.
Bias
 “A systematic (as opposed to random) distortion, due to a design flaw, interfering factor or judgement that can

affect the conception, design or conduct of a study or the collection, analysis, interpretation, presentation or

discussion of outcome data, causing erroneous over‐/under‐estimation of the probable size or direction of a

treatment effect or association”.121,122 In general, you cannot adjust for bias in an analysis. Bias leads to

spurious (untrue) associations.
Blinding (masking)
 The process of continuing allocation concealment until the end of the study and is easier to do in RCTs than

other types of epidemiological study.123 The effect of blinding is to reduce observer bias in ascertaining the

outcomes of interest, a form of differential information bias.
Case–control studies
 Retrospective, where cases are identified after an event has occurred, compared to similar controls in whom

the event has not occurred and any differences in exposure established afterwards.78
Case cross‐over design of case–control
studies
Is a within‐subject study design (compare with xRCT) attractive to OP, albeit appropriate only in specific

circumstances. A comparison is made between the event time‐window and the control time‐window in

terms of exposure.
Cohort studies
 Can be prospective or retrospective, with individuals exposed to an intervention identified, compared to non‐
exposed individuals, and any difference noted in the outcome over time.78
Cluster RCTs (cRCTs)
 Randomise at the group‐level, say a clinic or hospital, rather than at the individual patient‐level. Deciding the

unit of inference (whom the trial results will apply to) early is essential in the study design to prevent the

occurrence of ecological fallacy (drawing individual conclusions from group‐level data or vice versa). This type
of study design can significantly reduce costs by reducing the administrative burden of the trial since

changes are introduced wholesale at the group‐level, do not require individual patient‐level consent and may

also be more easily deployed in emergency situations.
Confounding
 Occurs when an apparent association between an exposure of interest and an outcome is due to another factor

that is associated with both the exposure and also independently with the outcome but is not in the causal

pathway between the two.16 Confounding differs from bias in that, if the confounder is known, statistical

methods can often be employed to adjust for its effect at the analysis stage, which is not always the case

with bias as it cannot be corrected for once introduced into a study.124 It is of course, not possible to correct

for unknown confounders. Confounding leads to true, but indirect (not causal), associations.
CONSORT (CONsolidated Standards Of
Reporting Trials)18
Aims “to alleviate the problems arising from the inadequate reporting of RCTs”. It consists of an evidence‐based
minimum standard of recommendations to assist with complete and transparent reporting of RCTs, thereby

aiding critical appraisal and interpretation.
Crossover RCTs (xRCTs):
 A within‐subject study design, where participants are randomly exposed to interventions in sequence

(treatment A followed by treatment B or vice versa), and thus act as their own controls.50 One of the

treatments may be placebo or an active control. xRCTs can give greater precision of treatment effect, given

the same number of subjects, than a similarly sized parallel group study.
Cross‐sectional studies
 Look at the prevalence of a disease at a specific time point and may use historical data to establish exposure.78
Effect modifier
 Is a clinical characteristic (e.g. age, sex, genotype) that causes the effect of the exposure to change (e.g.

hormone replacement therapy's protection from endometrial cancer only appears to operate in women with

a body mass index >30 kg/m2, thus in this context body mass index can be considered an effect modifier).7
Efficacy
 “The performance of an intervention under ideal, controlled circumstances compared to placebo.”4,6
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(Continued)

Glossary (A‐Z)
(Relative) effectiveness
 An intervention's performance in a “variety of endpoints important to patients and healthcare providers

compared to the usual care offered by a health system in the population of patients identified as eligible for

treatment by their care providers, subject to free and variable patient and clinician behaviour” and can be

measured in pragmatic RCTs or in OP studies.4,6
Efficacy‐effectiveness gap
 The inconsistency between the effects of an intervention reported in clinical trials compared to that reported in

routine clinical practice.4
External validity
 The extent to which the findings of a study are valid outside the context of the study. A study with good

external validity is likely to have results which apply to a broad range of people with heterogeneous

characteristics, which are largely generalisable (similar to generalisability).4,12,82
Factorial RCT (fRCT):
 Allow for the assessment of multiple treatments in the same population, maximises study power and also

provides information on interactions between treatments.53 In its simplest form, a 2×2 fRCT, say treatments

A or B and C or D exist. This fRCT would allow the comparison between treatment A and C or D, or

treatment B and C or D. an fRCT can help explain which treatment is better, either alone or in combination

and whether or not there is a synergistic or additive effect between treatments.53,125
Generalisability
 Whether study results apply to the population in whom they will be applied. It relates to the degree to which a

treatment effect estimate can be applied to a wide group of patients under usual conditions (it is a similar

concept to external validity).
Immortal time bias
 An important misclassification bias, a type of information bias. It refers to a period of follow‐up time between

cohort entry and first drug exposure when the outcome of interest could not have occurred.

Misclassification of the pre‐exposure person–time as exposed or simply not counting the pre‐exposure
person–time leads to this bias, where the effect estimate is mistakenly skewed towards the treatment group.
Incident‐user design
 A cohort study design aimed at reducing allocation bias, where incident‐users (new users) of a drug for a

particular indication are compared to incident‐users of a different drug (controls) for the same indication.
Information bias
 Occurs when information is obtained differently between exposed and unexposed cases such as a flaw in

measuring exposure, outcomes or covariates with differing accuracy between groups. For continuous

variables this is known as measurement error, for discrete variables classification error.96,97 Differential

information bias tends to exaggerate an association in either direction, where the bias functions to change

the likelihood of exposed or unexposed cases being identified such that one or the other is unequally likely to

be identified and recorded. In nondifferential information bias, exposed and unexposed cases are affected

equally, where all data might be gathered through an unreliable measure and thus test power is reduced and

the association tends to be under‐estimated.
Intention to treat analysis (ITT)
 When participants are analysed in the group to which they were assigned, irrespective of whether they

completed the study.
Internal validity
 The extent to which causal conclusions regarding a study are justified.25 A trial with good internal validity is

likely to have true results for the population with the characteristics being studied; in other words, any effect

detected is likely to be caused by the treatment.12
Large simple RCTs (lsRCTs):
 pRCTs (see below) but with protocols mandating only minimal data collection on outcomes important to

patients or care providers.
Observational study
 A prospective or retrospective study in which the investigator observes the natural course of events, with or

without a control group. Rather than being randomly assigned, the intervention is chosen for, or by, the

patient. Any difference in results is measured statistically.
Multi‐arm RCTs
 Allow the direct comparison of many different treatments or different treatment regimens compared to an

active comparator group. They are simpler, quicker and cheaper than a series of 2‐arm trials investigating the

same question and provide data for direct comparison rather than many 2‐arm studies being compared in

meta‐analysis, which causes difficulties in interpretation when the studies are heterogeneous.56,57 It may

also be the case that multi‐arm trials recruit more effectively than 2‐arm trials, possibly since the multiple

arms, with different inclusion criteria, mean more patients are eligible, and well‐designed multi‐arm studies

may provide significant patient benefit compared to multiple 2‐armed trials.56
Natural experiments
 Alternatives to RCTs that utilise naturally occurring circumstances to separate variables that usually associate

together in a before and after cohort study.64
Open‐label RCT
 An RCT where allocation concealment is undertaken but the study is not blinded and may increase the risk of

observer bias. To minimise this, in open‐label studies, staff analysing the outcome data should be blinded to

allocation, as this is almost always possible, and is particularly important when the outcome is subjective.118
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Glossary (A‐Z)
Partial blinding
 Involves the blinding of some aspects of an OP study (or indeed an RCT [see open‐label RCT]), for example

observer blinding. The preferred technique is to separate the extraction of exposure information from

outcome information.116
Platform trials
 A type of adaptive RCT. They have a common control arm but many different experimental arms that enter or

exit the trial as effectiveness or futility are demonstrated (often according to Bayesian decision‐making

rules). Adaptive randomisation, where patients with a particular molecular signature are preferentially

enrolled into the trial arms that show the most promise, may also be a feature.58
Pragmatic RCTs: (pRCTs)
 Aim to investigate heterogeneous patient groups, may not employ placebos, and use outcome measures which

might include return to work, reduction in general practitioner visits and quality of life, in addition to

outcomes related to efficacy.37
Propensity scores
 Aim to provide less biased estimates of treatment effect and can be used for matching exposed and unexposed

participants in a case–control study or to exclude nonoverlapping data from analysis on the basis of an

understanding of covariates that affect the condition being studied.106
Prospective randomised open blinded
endpoint study (PROBE)
A particular type of open‐label study design thought to be more cost‐effective than the double‐blind
prospective study. It uses strict randomisation and hard endpoint definitions (ones that are well‐defined and

measured objectively) to allow for the comparison of interventions to take place.
Protopathic bias
 Occurs when the prescription of a treatment is caused by the symptoms of an undiagnosed condition.
Publication bias
 When publication depends on the hypothesis being tested and the significance and direction of the effects

detected.119,120 A type of differential information bias.
Randomisation
 The random allocation of participants to intervention groups and achieves comparability between these,

especially in terms of prior risk of the outcome of interest and any effect modifiers. Randomisation allows

causal inferences to be made; in other words, the treatment effect observed is probably due to the

intervention, all things being equal.
Randomised control trial (RCT)
 A study in which a number of similar people are randomly assigned to 2 (or more) groups to test an

intervention. One group (or more) has the intervention and others act as a control (alternative intervention,

placebo or no interventional at all). Outcomes are measured at specific times and any difference in response

is measured statistically.
Randomised database studies
 A specific form of lsRCT, capitalising on the data held in electronic healthcare records or disease registry

databases. They attempt to achieve both internal and external validity although the optimal approach to

important issues such as participant consent are still to be standardised.
Relative efficacy
 Similar to efficacy except comparison is to a standard alternative rather than placebo.4,6
Risk window bias
 Specific to case–control studies. When considering, say, adverse drug reactions, the risk window is the period

following exposure when the risk of the outcome is in excess of the background risk.
Selection bias
 Occurs where individuals are more likely to be selected for a study than others, meaning that the patients

included in the study are different from those who are not, particularly in terms of prior risk of the outcome

of interest or effect modifiers.126 This means that the population under study is no longer representative of

the condition being investigated and participants differ from the population to whom the results are to be

applied independently of the interventions being studied.
Statistical analysis plan (SAP)
 A “more detailed and technical elaboration of the principal features of analysis included in the trial protocol”22
STROBE (STrengthening the Reporting of
OBservational studies in Epidemiology)
Aims to “reduce the incomplete and inadequate reporting” of data in observational studies, “which hamper the

assessment of strengths and weaknesses of the studies reported in the medical literature” and to “improve

the quality of reporting”.84
Stratified randomisation
 If certain covariates might not be equally distributed between treatment groups with patient‐level
randomisation then stratified randomisation might be employed to improve group comparability, e.g. it might

be important that there be equal numbers of patients with a rare, severe disease phenotype in both arms.10
Surveillance bias (detection bias)
 A differential (non‐random) information bias, where one group of patients is more likely to have the outcome

(or symptom associated with the outcome) diagnosed because of increased surveillance, screening or testing

for the outcome.
Umbrella trials
 A type of adaptive RCT. A single class or type of tumour is molecularly screened and assigned to subtrials in

light of these results, where the molecular signature refines rather than defines inclusion (compare with

basket trials, where inclusion is defined by the molecular signature).



CAPARROTTA ET AL. 1921
ACKNOWLEDGEMENTS

TMC is a Diabetes UK ‘Sir George Alberti Clinical Research Fellow’

(Grant number: 18/0005786), although the views represented in this

article are his own and not those of Diabetes UK.
ORCID

Thomas M. Caparrotta https://orcid.org/0000-0001-9009-9179

James W. Dear https://orcid.org/0000-0002-8630-8625
Helen M. Colhoun https://orcid.org/0000-0002-8345-3288
David J. Webb https://orcid.org/0000-0003-0755-1756

REFERENCES

1. Doll R, Hill AB. Smoking and carcinoma of the lung. BMJ.

1950;2(4682):739‐748.

2. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic

extracts in the treatment of diabetes mellitus. Can Med Assoc J.

1922;12(3):141‐146.

3. Sources of evidence for assessing the safety, efficacy and effective-

ness of medicines. The Academy of Medical Sciences. Available at:

https://acmedsci.ac.uk/policy/policy‐projects/methods‐of‐evaluat-
ing‐evidence. Accessed January 8, 2019.

4. IMI GetReal ‐ Real‐Life Data in Drug Development > Home. Available

at: http://www.imi‐getreal.eu/. Accessed January 8, 2019.

5. Akobeng AK. Understanding randomised controlled trials. Arch Dis

Child. 2005;90(8):840‐844.

6. Singal AG, Higgins PDR, Waljee AK. A primer on effectiveness and

efficacy trials. Clin Transl Gastroenterol. 2014;5(1):e45.

7. Corraini P, Olsen M, Pedersen L, Dekkers OM, Vandenbroucke JP.

Effect modification, interaction and mediation: an overview of

theoretical insights for clinical investigators. Clin Epidemiol. 2017;9:

331‐338.

8. Hill AB. The environment and disease: association or causation?

Proc R Soc Med. 1965;58:295‐300.

9. Torgerson DJ, Roberts C. Randomisation methods: concealment. BMJ.

1999;319(7206):375‐376.

10. Gordis L. Assessing preventive and therapeutic measures: randomized

trials, assessing preventive and therapeutic measures: randomized tri-

als. In: Epidemiology. 5th ed. Philadelphia, Pennsylvania: Elsevier/

Saunders; 2014:138‐154.

11. Shrier I, Boivin JF, Steele RJ, et al. Should meta‐analyses of interven-
tions include observational studies in addition to randomized

controlled trials? A critical examination of underlying principles. Am

J Epidemiol. 2007;166(10):1203‐1209.

12. Cartwright N. What are randomised controlled trials good for? Philos

Stud. 2010;147(1):59‐70.

13. Viera AJ, Bangdiwala SI. Eliminating bias in randomized controlled tri-

als: importance of allocation concealment and masking. Fam Med.

2007;39(2):132‐137.

14. Kunz R, Oxman AD. The unpredictability paradox: review of empirical

comparisons of randomised and non‐randomised clinical trials. BMJ.

1998;317(7167):1185‐1190.

15. Hansson L, Hedner T, Dahlöf B. Prospective randomized open blinded

end‐point (PROBE) study. A novel design for intervention trials. Blood

Press. 1992;1(2):113‐119.

16. Sedgwick P. Randomised controlled trials: understanding confound-

ing. BMJ. 2015;351:h5119.
17. Cochrane Handbook for Systematic Reviews of Interventions.

Available at: http://handbook.cochrane.org/. Accessed May 13, 2017.

18. Schulz KF. CONSORT 2010 statement: updated guidelines for

reporting parallel group randomized trials. Ann Intern Med. 2010;

152(11):726‐732.

19. Turner L, Shamseer L, Altman DG, et al. Consolidated standards of

reporting trials (CONSORT) and the completeness of reporting of

randomised controlled trials (RCTs) published in medical journals.

Cochrane Database Syst Rev. 2012;11:MR000030.

20. Hopewell S, Dutton S, Yu L‐M, Chan A‐W, Altman DG. The quality of

reports of randomised trials in 2000 and 2006: comparative study of

articles indexed in PubMed. BMJ. 2010;340(1):c723.

21. Plint AC, Moher D, Morrison A, et al. Does the CONSORT checklist

improve the quality of reports of randomised controlled trials? A sys-

tematic review. Med J Aust Pyrmont. 2006;185:263‐267.

22. Statistical Principles for Clinical Trials: ICH. Available at: http://www.

ich.org/products/guidelines/efficacy/efficacy‐single/article/statisti-
cal‐principles‐for‐clinical‐trials.html. Accessed January 8, 2019.

23. Gamble C, Krishan A, Stocken D, et al. Guidelines for the content of

statistical analysis plans in clinical trials. JAMA. 2017;318(23):

2337‐2343.

24. ENCePP Home Page. Available at: http://www.encepp.eu/standards_

and_guidances/methodologicalGuide4.shtml. Accessed January 8,

2019.

25. Behi R, Nolan M. Causality and control: threats to internal validity. Br

J Nurs. 1996;5(6):374‐377.

26. Levin KA. Study design VII. Randomised controlled trials. Evid Based

Dent. 2007;8(1):22‐23.

27. Kim H, Gurrin L, Ademi Z, Liew D. Overview of methods for compar-

ing the efficacies of drugs in the absence of head‐to‐head clinical trial

data. Br J Clin Pharmacol. 2014;77(1):116‐121.

28. Guyatt GH, Oxman AD, Vist GE, et al. Rating quality of evidence and

strength of recommendations: GRADE: an emerging consensus on

rating quality of evidence and strength of recommendations. BMJ.

2008;336(7650):924‐926.

29. Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: 4. Rating the

quality of evidence—Study limitations (risk of bias). J Clin Epidemiol.

2011;64(4):407‐415.

30. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 7. Rating

the quality of evidence—Inconsistency. J Clin Epidemiol. 2011;64(12):

1294‐1302.

31. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 8. Rating

the quality of evidence—Indirectness. J Clin Epidemiol. 2011;64(12):

1303‐1310.

32. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the

quality of evidence—Imprecision. J Clin Epidemiol. 2011;64(12):

1283‐1293.

33. Guyatt GH, Oxman AD, Montori V, et al. GRADE guidelines: 5. Rating

the quality of evidence—Publication bias. J Clin Epidemiol.

2011;64(12):1277‐1282.

34. Woodcock J, Ware JH, Miller PW, McMurray JJV, Harrington DP,

Drazen JM. Clinical trials series. N Engl J Med. 2016;374:2167‐2167.

35. Rothwell PM. External validity of randomised controlled trials: “to
whom do the results of this trial apply?”. Lancet. 2005;365(9453):
82‐93.

36. Dumville JC, Torgerson DJ, Hewitt CE. Research methods: reporting

attrition in randomised controlled trials. BMJ. 2006;332(7547):

969‐971.

https://orcid.org/0000-0001-9009-9179
https://orcid.org/0000-0002-8630-8625
https://orcid.org/0000-0002-8345-3288
https://orcid.org/0000-0003-0755-1756
https://acmedsci.ac.uk/policy/policy-projects/methods-of-evaluating-evidence
https://acmedsci.ac.uk/policy/policy-projects/methods-of-evaluating-evidence
http://www.imi-getreal.eu/
http://handbook.cochrane.org/
http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/statistical-principles-for-clinical-trials.html
http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/statistical-principles-for-clinical-trials.html
http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/statistical-principles-for-clinical-trials.html
http://www.encepp.eu/standards_and_guidances/methodologicalGuide4.shtml
http://www.encepp.eu/standards_and_guidances/methodologicalGuide4.shtml


1922 CAPARROTTA ET AL.
37. Hotopf M. The pragmatic randomised controlled trial. Adv Psychiatr

Treat. 2002;8(5):326‐333.

38. Vestbo J, Leather D, Diar Bakerly N, et al. Effectiveness of fluticasone

Furoate‐Vilanterol for COPD in clinical practice. NEJM. 2016;

375(13):1253‐1260.

39. Strom BL, Eng SM, Faich G, et al. Comparative mortality

associated with ziprasidone and olanzapine in real‐world use among

18,154 patients with schizophrenia: the ziprasidone observational

study of cardiac outcomes (ZODIAC). Am J Psychiatry. 2011;

168(2):193‐201.

40. Fröbert O, Lagerqvist B, Olivecrona GK, et al. Thrombus

aspiration during ST‐segment elevation myocardial infarction. NEJM.

2013;369(17):1587‐1597.

41. Glasziou PP, Sanders SL. Investigating causes of heterogeneity in sys-

tematic reviews. Stat Med. 2002;21(11):1503‐1511.

42. Abraham, J. International Conference On Harmonisation Of Technical

Requirements For Registration Of Pharmaceuticals For Human Use.

In Handbook of Transnational Economic Governance Regimes (eds.

Brouder, A. & Tietje, C.) 1041–1054. Leiden, Netherlands: Brill,

2009. https://doi.org/10.1163/ej.9789004163300.i‐1081.897

43. MRC/WellcomeTrust Workshop: regulation and biomedical research.

(2008).

44. Black N. Why we need observational studies to evaluate the effec-

tiveness of health care. BMJ. 1996;312(7040):1215‐1218.

45. Donner A, Klar N. Pitfalls of and controversies in cluster randomiza-

tion trials. Am J Public Health. 2004;94(3):416‐422.

46. Khanna R, Bressler B, Levesque BG, et al. Early combined immuno-

suppression for the management of Crohn's disease (REACT): a

cluster randomised controlled trial. The Lancet. 2015;386(10006):

1825‐1834.

47. Joffe S. Evaluating novel therapies during the Ebola epidemic. JAMA.

2014;312(13):1299‐1300.

48. Henao‐Restrepo AM, Camacho A, Longini IM, et al. Efficacy and

effectiveness of an rVSV‐vectored vaccine in preventing Ebola virus

disease: final results from the Guinea ring vaccination, open‐label,
cluster‐randomised trial (Ebola Ça Suffit!). Lancet. 2017;389(10068):

505‐518.

49. Camacho A. On behalf of & Ebola ça suffit ring vaccination trial con-

sortium. The ring vaccination trial: a novel cluster randomised

controlled trial design to evaluate vaccine efficacy and effectiveness

during outbreaks, with special reference to Ebola. BMJ. 2015;351:

h3740.

50. Sibbald B, Roberts C. Understanding controlled trials crossover trials.

BMJ. 1998;316(7146):1719‐1720.

51. Sedgwick P. What is a crossover trial? BMJ. 2014;348:g3191.

52. Dwosh IL, Giles AR, Ford PM, Pater JL, Anastassiades TP. Plasmaphe-

resis therapy in rheumatoid arthritis. N Engl J Med. 1983;308(19):

1124‐1129.

53. Torgerson DJ, Torgerson C. Factorial RCTs. In: Designing Randomised

Trials in Health, Education and the Social Sciences: An Introduction.

(pp. 114‐118). Basingstoke, Hampshire: Palgrave Macmillan Limited;

2008.

54. Bateman DN, Dear JW, Thanacoody HKR, et al. Reduction of adverse

effects from intravenous acetylcysteine treatment for paracetamol

poisoning: a randomised controlled trial. The Lancet. 2014;383(9918):

697‐704.

55. Kovesdy CP, Kalantar‐Zadeh K. Observational studies versus random-

ized controlled trials: avenues to causal inference in nephrology. Adv

Chronic Kidney Dis. 2012;19(1):11‐18.
56. Lawler M, Kaplan R, Wilson RH, MaughanT, on behalf of the S‐CORT

Consortium. Changing the paradigm—multistage multiarm random-

ized trials and stratified cancer medicine. Oncologist. 2015;20:

849‐851.

57. Parmar MKB, Carpenter J, Sydes MR. More multiarm randomised tri-

als of superiority are needed. Lancet. 2014;384(9940):283‐284.

58. Renfro LA, Sargent DJ. Statistical controversies in clinical research:

basket trials, umbrella trials, and other master protocols: a review

and examples. Ann Oncol. 2017;28(1):34‐43.

59. The STAMPEDE Trial. STAMPEDE Available at: http://www.

stampedetrial.org/. Accessed January 8, 2019.

60. Magirr D, Stallard N, Jaki T. Flexible sequential designs for multi‐arm
clinical trials. Stat Med. 2014;33(19):3269‐3279.

61. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascu-

lar and renal events in type 2 diabetes. NEJM. 2017;377(7):644‐657.

62. Kasenda B, Schandelmaier S, Sun X, et al. Subgroup analyses in

randomised controlled trials: cohort study on trial protocols and jour-

nal publications. BMJ. 2014;349(1):g4539.

63. Sun X, Briel M, Busse JW, et al. Credibility of claims of subgroup

effects in randomised controlled trials: systematic review. BMJ.

2012;344(1):e1553‐e1553.

64. Rutter M, Pickles A. Annual research review: threats to the validity of

child psychiatry and psychology. J Child Psychol Psychiatry.

2016;57(3):398‐416.

65. Simmons JP, Nelson LD, Simonsohn U. False‐positive psychology:

undisclosed flexibility in data collection and analysis allows presenting

anything as significant. Psychol Sci. 2011;22(11):1359‐1366.

66. Rawlins M. De testimonio: on the evidence for decisions about the

use of therapeutic interventions. Lancet. 2008;372(9656):2152‐2161.

67. Yusuf S, Wittes J, Probstfield J, Tyroler HA. Analysis and interpreta-

tion of treatment effects in subgroups of patients in randomized

clinical trials. JAMA. 1991;266(1):93‐98.

68. Freidlin B, Korn EL. Stopping clinical trials early for benefit: impact on

estimation. Clin Trials. 2009;6(2):119‐125.

69. Guyatt GH, Briel M, Glasziou P, Bassler D, Montori VM. Problems of

stopping trials early. BMJ. 2012;344(1):e3863.

70. Skovlund E. Repeated significance tests on accumulating survival

data. J Clin Epidemiol. 1999;52(11):1083‐1088.

71. Snapinn S, Chen M‐G, Jiang Q, KoutsoukosT. Assessment of futility in

clinical trials. Pharm Stat. 2006;5(4):273‐281.

72. Pocock SJ. When to stop a clinical trial. BMJ. 1992;305(6847):

235‐240.

73. Pocock SJ. Current controversies in data monitoring for clinical trials.

Clin Trials J Soc Clin Trials. 2006;3(6):513‐521.

74. Chou R, Aronson N, Atkins D, et al. Assessing harms when comparing

medical interventions. In: Methods Guide for Effectiveness and Compar-

ative Effectiveness Reviews. Rockville, Maryland: Agency for

Healthcare Research and Quality (US); 2008.

75. Heneghan C. Rare adverse events in clinical trials: understanding the

rule of three. BMJ EBM Spotlight (2017). Available at: http://blogs.bmj.

com/bmjebmspotlight/2017/11/14/rare‐adverse‐events‐clinical‐tri-
als‐understanding‐rule‐three/. Accessed January 8, 2019.

76. Kannel WB. Elevated systolic blood pressure as a cardiovascular risk

factor. Am J Cardiol. 2000;85(2):251‐255.

77. Home P. Cardiovascular outcome trials of glucose‐lowering medica-

tions: an update. Diabetologia. 2019;62(3):357‐369.

78. Rosenbaum, P. R. Observational Studies. In Observational Studies

1–17 (Springer New York, 2002). https://doi.org/10.1007/978‐1‐
4757‐3692‐2_1

https://doi.org/10.1163/ej.9789004163300.i-1081.897
http://www.stampedetrial.org/
http://www.stampedetrial.org/
http://blogs.bmj.com/bmjebmspotlight/2017/11/14/rare-adverse-events-clinical-trials-understanding-rule-three/
http://blogs.bmj.com/bmjebmspotlight/2017/11/14/rare-adverse-events-clinical-trials-understanding-rule-three/
http://blogs.bmj.com/bmjebmspotlight/2017/11/14/rare-adverse-events-clinical-trials-understanding-rule-three/
https://doi.org/10.1007/978-1-4757-3692-2_1
https://doi.org/10.1007/978-1-4757-3692-2_1


CAPARROTTA ET AL. 1923
79. Yellow Card Scheme ‐ MHRA. Available at: https://yellowcard.mhra.

gov.uk/. Accessed April 23, 2019.

80. Medical Research Council, M. R. C. Health Data Research UK (HDR

UK) (2017). Available at: https://www.mrc.ac.uk/about/institutes‐
units‐centres/uk‐institute‐for‐health‐and‐biomedical‐informatics‐
research/. Accessed January 8, 2019.

81. Kelly CM, Juurlink DN, Gomes T, et al. Selective serotonin reuptake

inhibitors and breast cancer mortality in women receiving tamoxifen:

a population based cohort study. BMJ. 2010;340(1):c693.

82. Steckler A, McLeroy KR. The importance of external validity. Am J

Public Health. 2008;98(1):9‐10.

83. Silverman SL. From randomized controlled trials to observational

studies. Am J Med. 2009;122(2):114‐120.

84. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC,

Vandenbroucke JP. The strengthening the reporting of observational

studies in epidemiology (STROBE) statement: guidelines for reporting

observational studies. J Clin Epidemiol. 2008;61(4):344‐349.

85. da Costa BR, Cevallos M, Altman DG, Rutjes AWS, Egger M. Uses and

misuses of the STROBE statement: bibliographic study. BMJ Open.

2011;1:e000048.

86. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham heart

study and the epidemiology of cardiovascular disease: a historical per-

spective. The Lancet. 2014;383(9921):999‐1008.

87. Mauro MJ, Davis C, Zyczynski T, Khoury HJ. The role of observational

studies in optimizing the clinical management of chronic myeloid leu-

kemia. Ther Adv Hematol. 2015;6(1):3‐14.

88. Berlin JA, Glasser SC, Ellenberg SS. Adverse event detection in drug

development: recommendations and obligations beyond phase 3.

Am J Public Health. 2008;98(8):1366‐1371.

89. Chan EW, Liu KQL, Chui CSL, Sing CW, Wong LYL, Wong ICK.

Adverse drug reactions—examples of detection of rare events using

databases. Br J Clin Pharmacol. 2015;80(4):855‐861.

90. Struck R, Baumgarten G, Wittmann M. Cost‐efficiency of knowledge

creation: randomized controlled trials vs. observational studies. Curr

Opin Anaesthesiol. 2014;27(2):190‐194.

91. Clinical Practice Research Datalink ‐ CPRD. Available at: https://

www.cprd.com/intro.asp. Accessed January 8, 2019.

92. SCI‐Diabetes. Available at: http://www.sci‐diabetes.scot.nhs.uk/.
Accessed January 8, 2019.

93. Health Maintenance Organization Research Network (HMORN)

UCSF Center for Diabetes Translational Research|Global Research

Projects. Available at: https://globalprojects.ucsf.edu/project/health‐
maintenance‐organization‐research‐network‐hmorn‐ucsf‐center‐dia-
betes‐translational. Accessed January 8, 2019.

94. Chow JTY, Lam K, Naeem A, Akanda ZZ, Si FF, Hodge W. The path-

way to RCTs: how many roads are there? Examining the

homogeneity of RCT justification. Trials. 2017;18(1):51.

95. Tavazzi L. Do we need clinical registries? Eur Heart J. 2014;35(1):7‐9.

96. Grimes DA, Schulz KF. Bias and causal associations in observational

research. Lancet. 2002;359(9302):248‐252.

97. Ranstam J. Bias in observational studies. Acta Radiol. 2008;49(6):

644‐645.

98. Pocock SJ, Elbourne DR. Randomized trials or observational tribula-

tions? NEJM. 2000;342(25):1907‐1909.

99. Concato J, Shah N, Horwitz RI. Randomized, controlled trials, obser-

vational studies, and the hierarchy of research designs. NEJM.

2000;342(25):1887‐1892.

100. Benson K, Hartz AJ. A comparison of observational studies and ran-

domized, controlled trials. NEJM. 2000;342(25):1878‐1886.
101. Anglemyer, A., Horvath, H. T. & Bero, L. Healthcare outcomes

assessed with observational study designs compared with those

assessed in randomized trials. In Cochrane Database of Systematic

Reviews (ed. The Cochrane Collaboration) (John Wiley & Sons, Ltd,

2014). https://doi.org/10.1002/14651858.MR000034.pub2

102. Gibbons CL, Mangen MJJ, Plass D, et al. Measuring underreporting

and under‐ascertainment in infectious disease datasets: a comparison

of methods. BMC Public Health. 2014;14(147).

103. Johnson ES, Bartman BA, Briesacher BA, et al. The incident user

design in comparative effectiveness research. Pharmacoepidemiol

Drug Saf. 2013;22(1):1‐6.

104. Rutter M. Proceeding from observed correlation to causal inference:

the use of natural experiments. Perspect Psychol Sci. 2007;2(4):

377‐395.

105. Uchiyama T, Kurosawa M, Inaba Y. MMR‐vaccine and regression in

autism Spectrum disorders: negative results presented from Japan. J

Autism Dev Disord. 2007;37(2):210‐217.

106. Okoli GN, Sanders RD, Myles P. Demystifying propensity scores. Br J

Anaesth. 2014;112(1):13‐15.

107. Austin PC. An introduction to propensity score methods for reducing

the effects of confounding in observational studies. Multivar Behav

Res. 2011;46(3):399‐424.

108. Levin D, Bell S, Sund R, et al. Pioglitazone and bladder cancer risk: a

multipopulation pooled, cumulative exposure analysis. Diabetologia.

2015;58(3):493‐504.

109. Farran B, McGurnaghan S, Looker HC, et al. Modelling cumulative

exposure for inference about drug effects in observational studies.

Pharmacoepidemiol Drug Saf. 2017;26(12):1527‐1533.

110. Hernán MA, Robins JM. Instruments for causal inference: an Epidemi-

ologist's dream? Epidemiology. 2006;17(4):360‐372.

111. Klungel OH, Uddin MJ, de Boer A, Belitser SV, Groenwold RH, Roes

KC. Instrumental variable analysis in epidemiologic studies: an over-

view of the estimation methods. Pharm Anal Acta. 2015;06:2.

112. Etminan M, Samii A. Pharmacoepidemiology I: a review of

Pharmacoepidemiologic study designs. Pharmacotherapy. 2004;

24(8):964‐969.

113. ‘Chris’ Delaney JA, Suissa S. The case‐crossover study design in

pharmacoepidemiology. Stat Methods Med Res. 2009;18:53‐65.

114. Donnan PT, Wang J. The case‐crossover and case‐time‐control
designs in pharmacoepidemiology. Pharmacoepidemiol Drug Saf.

2001;10(3):259‐262.

115. Confavreux C, Suissa S, Saddier P, Bourdès V, Vukusic S. Vaccinations

and the risk of relapse in multiple sclerosis. N Engl J Med.

2001;344(5):319‐326.

116. Parker, R. A. & Berman, N. G. Chapter 28 ‐ Blinding in observational

studies. in Planning Clinical Research (Cambridge University Press,

2016). https://doi.org/10.1017/CBO9781139024716

117. Kang H. The prevention and handling of the missing data. Korean J

Anesthesiol. 2013;64(5):402‐406.

118. Sedgwick P. What is an open label trial? BMJ. 2014;348:g3434.

119. Viswanathan M, Berkman ND, Dryden DM, Hartling L. Approaches to

Assessing the Risk of Bias in Studies. Rockville, Maryland: Agency for

Healthcare Research and Quality (US); 2013.

120. Hammer GP, du Prel J‐B, Blettner M. Avoiding bias in observational

studies: part 8 in a series of articles on evaluation of scientific publi-

cations. Dtsch Ärztebl Int. 2009;106:664.

121. A Word About Evidence: 6. Bias—a proposed definition. Catalog of

Bias (2018). Available at: https://catalogofbias.org/2018/06/15/a‐

https://yellowcard.mhra.gov.uk/
https://yellowcard.mhra.gov.uk/
https://www.mrc.ac.uk/about/institutes-units-centres/uk-institute-for-health-and-biomedical-informatics-research/
https://www.mrc.ac.uk/about/institutes-units-centres/uk-institute-for-health-and-biomedical-informatics-research/
https://www.mrc.ac.uk/about/institutes-units-centres/uk-institute-for-health-and-biomedical-informatics-research/
https://www.cprd.com/intro.asp
https://www.cprd.com/intro.asp
http://www.sci-diabetes.scot.nhs.uk/
https://globalprojects.ucsf.edu/project/health-maintenance-organization-research-network-hmorn-ucsf-center-diabetes-translational
https://globalprojects.ucsf.edu/project/health-maintenance-organization-research-network-hmorn-ucsf-center-diabetes-translational
https://globalprojects.ucsf.edu/project/health-maintenance-organization-research-network-hmorn-ucsf-center-diabetes-translational
https://doi.org/10.1002/14651858.MR000034.pub2
https://doi.org/10.1017/CBO9781139024716
https://catalogofbias.org/2018/06/15/a-word-about-evidence-6-bias-a-proposed-definition/


1924 CAPARROTTA ET AL.
word‐about‐evidence‐6‐bias‐a‐proposed‐definition/. Accessed

January 8, 2019.

122. Porta M. Dictionary of Epidemiology. New York, New York: Oxford

University Press, Incorporated; 2014.

123. Day SJ, Altman DG. Blinding in clinical trials and other studies. BMJ.

2000;321(7259):504.

124. Barton S. Which clinical studies provide the best evidence? The best

RCT still trumps the best observational study. BMJ. 2000;321(7256):

255‐256.

125. Sedgwick P. What is a factorial study design? BMJ. 2014;349:g5455.

126. Sedgwick P. Selection bias versus allocation bias. BMJ. 2013;346:

f3345.

127. Korhonen MJ, Huupponen R, Ruokoniemi P, Helin‐Salmivaara A.

Protopathic bias in observational studies on statin effectiveness.

Eur J Clin Pharmacol. 2009;65(11):1167‐1168.

128. Shin JY. Potential overestimation of risk by protopathic bias and mitiga-

tion by the introduction of lag‐time. 2016;354:i4857.

129. Haut ER, Pronovost PJ. Surveillance bias in outcomes reporting.

JAMA. 2011;305(23):2462‐2463.

130. Agarwal P, Moshier E, Ru M, et al. Immortal time bias in observational

studies of time‐to‐event outcomes. Cancer Control J Moffitt Cancer

Cent. 2018;36:195‐199.
131. Lévesque LE, Hanley JA, Kezouh A, Suissa S. Problem of immortal

time bias in cohort studies: example using statins for preventing pro-

gression of diabetes. BMJ. 2010;340(907–911):b5087.

132. Suissa S. Immortal time bias in Pharmacoepidemiology. Am J

Epidemiol. 2008;167(4):492‐499.

133. Suissa S, Azoulay L. Metformin and the risk of cancer: time‐related
biases in observational studies. Diabetes Care. 2012;35(12):

2665‐2673.

134. van Staa TP, Abenhaim L, Leufkens H. A study of the effects of

exposure misclassification due to the time‐window design in

pharmacoepidemiologic studies. J Clin Epidemiol. 1994;47(2):183‐189.

How to cite this article: Caparrotta TM, Dear JM, Colhoun

HM, Webb DJ. Pharmacoepidemiology: Using randomised

control trials and observational studies in clinical decision‐mak-

ing. Br J Clin Pharmacol. 2019;85:1907–1924. https://doi.org/

10.1111/bcp.14024

https://catalogofbias.org/2018/06/15/a-word-about-evidence-6-bias-a-proposed-definition/
https://doi.org/10.1111/bcp.14024
https://doi.org/10.1111/bcp.14024

